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The Application of the Point Matching Method
to the Analysis of Microstrip Lines with

Finite Metallization Thickness

STEFAN KOSSLOWSKI, MEMBER, IEEE, FRANK B@ELSACK, MEMBER, IEEE,

AND INGO WOLFF, FELLOW, IEEE

Abstract —Tfds paper presents an attempt to calculate the characteris-

tics of a shielded microstrip line with finite metallization thickness by the

point matching method (PMM,). Nmnericaf results are presented in order

to assert the validity of this approach in cases of large vahres of strip width

to tfdckness ratio. It is found that au increase in the strip thickness is

afways associated with difficulties in convergence. This cars be easily

recognized if the field distribution is taken into account.

I. INTRODUCTION

T

HE MODE MATCHING technique (MMT) is usu-

ally used in the analysis of shielded rnicrostrip lines

with finite metallization thickness. A basic disadvantage of

this method is that 90° edges of the strip metallization

cannot be avoided (in theory) when calculating the un-

known field expansion coefficients. In most cases 90°

edges cause difficulties in the convergence of the character-

istic impedance and the effective dielectric constant.

In this paper, an attempt is made to solve these prob-

lems using the point matching method (PMM). The ad-

vantage in this case is that the method does not depend on

a special geometry of the strip metallization. Therefore, the

microstrip line can be described by structures as shown in

Fig. 1. Some interesting papers have been published dealing

with the solution of field problems in hollow-piped wave-

guides of arbitrary geometry by using the PMM (for

example [2]–[4]). Thus it is expected that an application of

this method to microstrip lines is possible if some restrict-

ing conditions pointed out in [5]–[7] are taken into account.

II. THEORETICAL APPROACH

The symmetry of the considered waveguide allows the

description of the electromagnetic field as a superposition

of even and odd modes. In both cases the procedure for

using the PMM is identical. Hence it is sufficient to

investigate one mode only (e.g. the quasi-TEM mode, the

first even mode) in order to study the characteristics of this

approach.

To calculate the electromagnetic field distribution, the

stripline is subdivided into two areas as shown in Fig. 2.
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Fig. 1. Description of the microstrip tine that is to be calculated by the
PMM. Area 1: c(l) = co; p(l)= y. (air-filled region). Area 2: C(2)=
cr.c~; p(2) = pO (dielectric region).

The field components within each of these areas are de-

scribed by an electric and a magnetic vector potential with

a component in the z direction (coordinate of wave propa-

gation):

A+= q ‘. ii= ~d F“= *H.;= (1)

with ii= the unit vector in the z direction.

This leads to the following potential functions:

Area 1:

~=1

.sin(k~)(n )”(y–c))”e-~~’”z

~=1

.cos(kf)(n ).(y–c))”e–Jk=’z (2)

Area 2:

n=l

T2H= ~ Dn. sin(kj2)(n) .x)l. cos(k~)(n) ”y)”e-~~’”’.
~=1

For the numerical analysis the series have to be truncated

at a truncation index N. For the microstrip line shown in
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Fig. 3. Defined curves CP (.=1,2,3,4,5) and C descnbmg the

Fmetallization and the air-dielectric interface as wel as the matching
Fig. 2. Subdividing tiewavegtide inorder tom&e useofitssymmetW. points andthe subareas A& (p=l,2,3,4,5).

Regionl: air-filled region, Region 2: dielectric region.

Fig. 2 the relationship between the appearing eigenvalues

is given by

l’rr

()
~:lm(n) = n–j ‘–

e

(’)’(n)k(l)(n)= k~–k; –kX
Y

(3)k(2)(n) = ~,k;–k~–k~)’(n)
Y

and according to [1] the electromagnetic field is obtained

from the potentials by

1 d2’lE 8*H
EX=—. — —

juc ax az – ay

I av a*H
Ey=— —+—

jac” ayaz ax

1

()

a2
E==—. — +k2 PE

jo.s az2

a*E 1 a2qjH
HX=— —.—

ay + jtip ax az

a*E 1 a2*H
H,=–=+— —

jup” ayaz

1

()

a2
Hz=— —

jup” az2
+ k2 *H. (4)

The description of the electromagnetic field by the series

of eigenfunctions as described above ensures that the wave

equation and the boundary conditions at the conducting

shielding are fulfilled.

To satisfy the continuity conditions for the electromag-

netic field at the interface between the two regions (Fig. 2)

as well as on the strip metallization, three different proce-

dures based on the PMM will be presented. Therefore, in a

cross section such that z = const. the waveguide is de-

scribed by curves C ~ . . . C ~ (metallization) and C ~ (dielec-
tric–air interface) (Fig. 3). On each of the curves C ~

(v =1,2,3,4,5) PV fixed points S,(i), with i =1,2,..., P,,
are determined. On C ~ there are chosen Q points with the

coordinates (xQ(i)lyQ(i)), (i =1,2,. . . . Q).

The first approach is based on the requirement that the

boundary conditions at the test points Sl(i) . . . S5(i) de-

scribed by the coordinates (xV(i ) IyV(i)) be satisfied by the

vector potentials so that

‘lE ~=x”(z) = o (5)

Y= Y.(J)

as well as

2*HI-.

aii x=x,(1) = o. (6)

‘Y=.!’’”(l)

At the dielectric–air interface the continuity conditions

have to be satisfied by the tangential electromagnetic field

components:

i=l. ““Q (7)
E:~

.=.~(,) =E& X=xQ(’)’

~=yQ(t) .~=yQ(i)

and
~=1 . . . Q. (8)

H::
. =xQ(,) =H:z X=xQ(i)>

y=yQ(z) y=~Q(2)

If all boundary and continuity equations are formulated, a
5

system of 2. ~ PV+4. Q equations is derived which can
y=l

be expressed m matrix form as follows:

J.7.z= 8. (9)

~ is the coefficient vector described by

I?=(A1,. ... A~, B1, B~, C1,, C1,. . ., C~, D1,. ... D~)T.

(lo)
5

The system matrix N exists of 2. ~ PV+ 4. Q rows and

4. N columns.
“=1

A nontrivial solution of the above set of homogeneous

equations is obtained if and only if

det~=O. (11)

Hence, in this approach, the relationship between the

number of test points on the one hand and the truncation

index N on the other hand is given by

2. ~ PV+4. Q=4. N. (12)
“=1

If this condition is satisfied, the eigenvalue problem, e.g. of
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determining the effective dielectric constant ceff, can be

solved.

There are possibilities other than the one shown above

which take the continuity conditions into account. A sec-

ond solution (method 2) can be obtained if the boundary

conditions on the strip metallization are satisfied by the

field components instead of the vector potentials (method

1). Because only a finite number N of eigenfunctions is

used, these formulations are not equiv@ent. Using this

method, the rank of the system matrix M and the correla-

tion between the number of test points and the number of

eigenfunctions is the same as that given in (12).

A third method to solve the problem is to combine the

PMM and the MMT. This means that the continuity

conditions for the electric fields on the curves C ~ and C ~

(Fig. 3) are fulfilled by using the orthogonality of the

eigenfunctions in the interval [0 Ie ]. Therefore the tangen-

tial components of the electric fields are tested by

(_R(@l’ly=, .@an(x)} dx= Je(Ej’)ly=h. @an(x)) dx

~_R2{ I
E~)Y=~ ‘@bn(X)}dx = ~e{@2)[y=h@bn(X)}dx.

2

(13)

Testing with the eigenfunctions of the potential functions

instead of the arbitrary functions @a~ and ~~~ delivers

expressions for the unknown coefficients CV and D. in the

form of series that depend only on Au and B..

The boundary conditions for the electric field on the

remaining strip metallization (curves C ~,C ~,C ~,C ~) as well

as the continuity conditions for the magnetic field on the

dielectric-air interface (curve C ~) are satisfied by using

test points on these curves. This results in the following set

of homogeneous equations:

@.@=~ (14)

where ~ is given by

@=( A1,. ... A~, B1, B~)TB~)T. (15)

In this case the relationship between the number of

boundary points and the truncation index N becomes

2. ~Pv+2. Q=2. N. (16)
“=1

The advantage of method 3 in comparison to methods 1

and 2 is that when choosing the ~ame number of eigen-

functions the rank of the matrix M’ is halved.

III. DEFINITION OF THE CHARACTERISTIC

IMPEDANCE ZL

Different definitions of the characteristic impedance of

a microstrip line are given in the literature (e.g. [8]). In this
paper the definition based on the current and the power

transported in the z direction is used. The current 1= is

given by

(17)

LAO /

with

C=ucv (18)
~=1

whereas the transmitted power is

ing vector:

P,=:. $ J-E:<
k=l Ak

described by the Poynt-

@.iizd A. (19)

The subdivision of the cross section of the shielded micro-

strip line into subareas A ~ is demonstrated in Fig. 3.

It is worth noting that because of the symmetry Fig. 3

shows only one half of the considered microstrip line.

Therefore the characteristic impedance of the complete

line has to be calculated as follclws:

ZL=;; . (20)
z

IV. NUMERICAL RESULTS

The following numerical results have been calculated

with respect to two different geometries at a frequency of

{~ 30 GHz. The considered waveguides are characterized

microstrip line 1 microstrip line 2

c =1.2 mm c = 6.0 mm

d = 0.5 mm d = 2.5 mm

e=l.omm e = 5.0 mm

h = 0.635 mm h = 0.635 mm

c, = 2.33 t= 35pm

(r = 2.33.

In case of structure 1 two different metallization thick-

nesses are used:

tl =10 pm (line la)

t2 = 3.5 pm (line lb).

It shoqld be pointed out that in the case of microstrip line

1 the substrate height is near] y half the height of the

shielding, which is not usual in the case of microstrip

circuits.

Results have been calculated using an equidistant distri-

bution of test points since this has shown the most favor-

able characteristics for convergence of the solution. When

choosing test points on C ~ and C ~, respectively, it should

be taken into account that Fig. 2 shows only one half of

the total microstrip line. Hence, equidistant distribution of

the test points on the metallizati on is given by

xP1(i) =
d–R1
~.(2i -l.), i=l... P1. (21)

1

This guarantees that the distance between XPI(l) and its

mirror point on the symmetry plane is exactly the same as

the gap between two successive points on C ~. Because of

the relationship between thiclcness and width of the

metallization, initially no test points on C ~, 02~, and C ~

will be considered. The chosen distribution of test points
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Fig. 4. The dependence of t.e normalized propagation coefficient

(k= /ko)z = ce~~on the number of eigenfunctions N. Microstrip line 1,
t =10 pm, R2’ = RI = 3 pm, method 1 (boundary conditions on the
metallization are satisfied by the potentials).

on the strip boundary is shown in Fig. 3. The considera-

tion of N eigenfunctions leads to

Pl=P5=~ and Q= N–Pl (22)

if method 1 or method 2 is used.

The calculations of the effective dielectric constant ~eff

and the impedance Z~ by method 3 require

P1=~ and Q= N–Pl.

Figs. 4 through 12 show various numerical results. When

the convergence behavior is investigated a special kind of

perodicity is observed (Figs. 4–9 and Fig. 12). For all cases

apparently four different curves can be recognized. They

describe this periodicity of the convergence behavior and

are characterized by

- P, even and Q even (curve 1)

- P, even and Q odd (curve 2)

- P, odd and Q even (curve 3)

– PI odd and Q odd (cutie 4).

Fig. 4 shows the effective dielectric constant as a func-

tion of the truncation index N if the microstrip line la is

analyzed by method 1. In this case the approach fails.
Even for large truncation ti’dices (such as N > 20) more

than one solution for Ceff as a function of N can be

observed within the interval of 1< Ccff < c,. It has been

observed that some solutions have disappeared at larger

truncation indices (for example N =26 and N =34 for the

case of PI odd and Q odd, shown in Fig. 4). This may

cause the misleading conclusion that a satisfactory solution

can be obtained. However, this is not the case since

convergence cannot be recognized. (It should be pointed

out here that truncation indices from N = 27 to N = 32

have not been analyzed. Therefore, corresponding marks

are missing in Fig. 4.)
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Fig. 5. The dependence of the normalized propagation coefficient
(k:/ko)2 = ce~~on the number of eigenfunctions N. Microstnp line 1,

t =10 pm, R2 = RI = 3 pm, method 2 (boundary conditions on the
metallization are satisfied by the tangential components of the electric
field).
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Fig. 6. The dependence of the normalized propagation coefficient
(k= /ko)* = ce~~ on the number of eigenfunctions N. Microstrip line 1,

t =10 pm, R2 = RI = 3 pm, method 3 (combination of PMM and
MMT).

Fig. 5 shows the results for the same waveguide if the

boundary conditions on the strip metallization are satisfied

by the field components instead of the vector potentials
(method 2). The comesponding curves which result from

the application of method 3 (combination of MMT and

PMM) are presented in Fig. 6. However, both of these

methods diverge if a thickness larger than 10 pm is chosen

for stripline 1. Therefore, numerical results (Fig. 7) are

calculated by using method 2 after reducing the strip

metallization thickness to 3.5 pm (stripline lb). For this

increased w/t ratio convergence of the effective dielectric

constant Ceff as a function of the number of considered

eigenfunctions N is achieved.

Several numerical calculations of various striplines which

are not presented in this paper have shown that best
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Fig. 7. The dependence of the normalized propagation coefficient
(k= /ko)z = ce~~on the number of eigenfunctions 7?. Microstrip line 1,
t = 3.5 #m, R2 = RI = 0.3 pm, method 2 (boundary conditions on the
metallization are satisfied by the tangential components of the electric
field).
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Fig. 8. The dependence of the normalized propagation coefficient

(k=/kO)z= ee~~on the number of eigenfunctions N. Microstrip line 2,

t = 35 pm, R2 = RI = 3 pm, method 2 (boundary conditions on the
metallization are satisfied by the tangential components of the electric

field).

results are obtained when the boundary conditions on the

strip metallization (at determined test points) have been

satisfied by the electric field components. Therefore a

further investigation using method 2 will be carried out.

Fig. 8 shows the convergence behavior of C,ff if stripline

2 with a metallization thickness of t = 35 pm and a shield-

ing height c of nearly ten times the substrate height k is

considered by application of method 2 with equidistant

test points. It should be pointed out here that a satisfac-

tory convergence for the above metallization thickness will

guarantee the convergence for any smaller vahte as well.

Moreover, a good convergence behavior of the effective

dielectric constant Ceff will justify a sensible calculation of

the characteristic impedance Z~. Because of the good

convergence behavior of Ceff in Fig. 8, the corresponding

characteristic impedance Z~ has been calculated (Fig. 9).

Good convergence behavior for Z~ is also observed. How-
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Fig. 9. The dependence of the characteristic impedance ZL on the
number of eigenfunctions N. Microslxip line 2, t = 35 pm, R2 = RI =
3 pm, method 2 (boundary conditions on the metallization are satisfied
by the tangential components of the electric field).
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Fig. 10. Distribution of the transverse electric field corresuonclku to

Fig. 8 if N = 7 eigenfunctions are taken into acconn{. -

ever, correct field distribution is only obtained for large

truncation indices (for example N = 38, Fig. 11) while

lower values (for example, N:= 7) will lead to incorrect

field distributions (as shown in Fig. 10) even though c.ff

and Z~ proved to be convergent.

Several calculations have shown the necessity of consid-

ering not only the convergence behavior of t ,ff and Z~ but

also of the field distribution. The following will be given as

an example:

The calculation of stripline 1a (t= 10 pm) by method 3

using only one test point on C ~ leads to a good conver-

gence behavior for ~eff (Fig. 1.2). Even though the con-

verged value of c~ff =1.7 seems to be in accordance with

available results (by using MMT), the associated field

distribution (shown in Fig. 13, truncation index N = 21) is

incorrect. The strong concentration of the transverse elec-

tric field on the shielding around the dielectric interface

cannot be explained physically. The coincidence between

the calculated value of Ceff. and that available in the

literature is only a matter of cha,nce.

Hence from the foregoing results the following facts

should be pointed out:
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Fig. 11. Distribution of the transverse electric field corresponding to
Fig. 8 if N =38 eigenfunctions are taken into account.
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Fig. 12. The dependence of the normalized propagation coefficient

(k, /ko)z = te~~ on the number of eigenfunctions N. Microstnp line 1,

t =10 pm, R2 = RI = 3 pm, method 3 (combination of PMM and

MMT) with one test point chosen on C ~ (P3 = 1).

1)

2)

Best results are obtained by choosing equidistant test

points, i.e., a subdivision of the boundary corre-

sponding to the geometry (see Fig. 3),

It is necessary to check the obtained numerical re-

sults by validating the correctness of the field distr-

ibution.

V. CONCLUSIONS

This paper has pointed out the possibilities and difficul-
ties in analyzing the characteristics of shielded microstrip

lines with finite strip metallization thickness using the

PMM. This approach is based on satisfying the boundary

conditions at discrete boundary points, which is quite

understandable. However, the examples presented call at-

tention to the necessity of proving the validity of the

obtained solutions by other criteria. This is because good

convergence behavior of the effective dielectric constant

c~ff does not always guarantee the correct characteristic

impedance or field distribution. In particular, field distri-

bution can be considered as a reliable check for the

numerical results.

I 1

Fig. 13. Distribution of the transverse electric field corresponding to

Fig. 12 if N = 21 eigenfunctions are taken into account.

Another disadvantage of the PMM is the strong correla-

tion between the number of boundary points considered

and the rank of the system matrix Z. Since each of the

test points is described by different coordinates, the num-

ber of equations cannot be reduced analytically. Therefore

computation time and storage requirements rise drastically

if a sufficient number of eigenfunctions have to be taken

into account.

Nevertheless, calculating the transmission properties of

microstrip lines with high w\t ratios using the PMM may

lead to acceptable results.
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