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The Application of the Point Matching Method
to the Analysis of Microstrip Lines with
Finite Metallization Thickness
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Abstract —This paper presents an attempt to calculate the characteris-
tics of a shielded microstrip line with finite metallization thickness by the
point matching method (PMM). Numerical results are presented in order
to assert the validity of this approach in cases of large values of strip width
to thickness ratio. It is found that an increase in the strip thickness is
always associated with difficulties in convergence. This can be easily
recognized if the field distribution is taken into account.

I. INTRODUCTION

HE MODE MATCHING technique (MMT) is usu-

ally used in the analysis of shielded microstrip lines
with finite metallization thickness. A basic disadvantage of
this method is that 90° edges of the strip metallization
cannot be avoided (in theory) when calculating the un-
known field expansion coefficients. In most cases 90°
edges cause difficulties in the convergence of the character-
istic impedance and the effective dielectric constant.

In this paper, an attempt is made to solve these prob-
lems using the point matching method (PMM). The ad-
vantage in this case is that the method does not depend on
a special geometry of the strip metallization. Therefore, the
microsirip line can be described by structures as shown in
Fig. 1. Some interesting papers have been published dealing
with the solution of field problems in hollow-piped wave-
guides of arbitrary geometry by using the PMM (for
example [2]-[4]). Thus it is expected that an application of
this method to microstrip lines is possible if some restrict-
ing conditions pointed out in [5]-[7] are taken into account.

II. THEORETICAL APPROACH

The symmetry of the considered waveguide allows the
description of the electromagnetic field as a superposition
of even and odd modes. In both cases the procedure for
using the PMM is identical. Hence it is sufficient to
investigate one mode only (e.g. the quasi-TEM mode, the
first even mode) in order to study the characteristics of this
approach.

To calculate the electromagnetic field distribution, the
stripline is subdivided into two areas as shown in Fig. 2.
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Fig. 1. Description of the microstrip line that is to be calculated by the
PMM. Area 1: p®D =y (air-filled region). Area 2: ¢ =

W =g
€, € p@ = pq (dielectric region).

The field components within each of these areas are de-
scribed by an electric and a magnetic vector potential with

a component in the z direction (coordinate of wave propa-
gation):

A=V¥Eg, and F=¥"7, (1)
with i, the unit vector in the z direction.
This leads to the following potential functions:
Area 1:
o0
F=Y 4,cos(kP(n)-x)
n=1
sin (kP (n)-(y - ¢))-e ik
V= % Besin(k(n)-x)
n=1
wcos (kP (n) (y—c))-e (2)
Area 2:
[
VE= ) C,,-cos(k,‘cz)(n)-x‘)-sin(kﬁz)(n)-y)-e”fk:‘z
n=1
[+
V= ¥ D,sin(k@(n)-x)-cos(kP(n)-y)-e =,

3
i
=

For the numerical analysis the series have to be truncated
at a truncation index N. For the microstrip line shown in
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Fig. 2. Subdividing the waveguide in order to make use of its symmetry.
Region 1: air-filled region. Region 2: dielectric region.

Fig. 2 the relationship between the appearing eigenvalues
is given by

k®D(n) = n- o
* 2] e

kP(n) =i — k2 = kM (n)

k@ (n) = e, k2— k2 —k@(n) (3)

and according to [1] the electromagnetic field is obtained
from the potentials by

E 1 9°¥E GvH
x_]we. dxdz dy
E 1 3*¥E 5¥H
Y jwe dydz dx
1 a2
E,=— |75 +k*|¥E
jwe \ 0z
avE 1 92wH
H, = _
dy  jep Jx0dz
IvE 1 92yH
= — + —_—
d dx  jop dyd:z

H S k2|

7 jep ( a2 ) ' “)
The description of the electromagnetic field by the series
of eigenfunctions as described above ensures that the wave
equation and the boundary conditions at the conducting
shielding are fulfilled.

To satisfy the continuity conditions for the electromag-
netic field at the interface between the two regions (Fig. 2)
as well as on the strip metallization, three different proce-
dures based on the PMM will be presented. Therefore, in a
cross section such that z=const. the waveguide is de-
scribed by curves C, - - - € (metallization) and C , (dielec-
tric-air interface) (Fig. 3). On each of the curves C,
(»=1,2,3,4,5) P, fixed points S,(i), with i=1,2,---, P,
are determined. On C , there are chosen Q points with the
coordinates (x,(i)|yp(i)), (i=1,2,---,Q0).
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Fig. 3. Defined curves C, (»=1,2,3,4,5) and C, describing the

metallization and the air—dielectric interface as well as the matching
points and the subareas A, (p=1,2,3,45).

The first approach is based on the requirement that the
boundary conditions at the test points S;(i)- - Ss(i) de-
scribed by the coordinates (x,(i)|y,(i)) be satisfied by the
vector potentials so that

\I,Ex=x,(t)=0 (5)
y=x,(1)
as well as
ovH
a7 |x=xm =0 (6)

y=x,(
At the dielectric—-air interface the continuity conditions

have to be satisfied by the tangential electromagnetic field
components:

1 —_ 2 L
EQ|x=x00 =EQ|s-xors  i=1---0 (7)
y=yo() y=yp(1)
and
1 ) L
HQ <= o) =HS = o005 i=1---0. (8)
y=yo() y=yo(1)

If all boundary and continuity equations are formulated, a
5

system of 2- ) P, +4-Q equations is derived which can
y=1
be expressed in matrix form as follows:

M-K=0.
K is the coefficient vector described by
K= (Ay, -+, Ay, B+, By, Cpye -+, Cy, Dy, - -.DN)T.
(10)
5

The system matrix M exists of 2- Y. P, +4-Q rows and

(9)

4- N columns. v=1

A nontrivial solution of the above set of homogeneous
equations is obtained if and only if

det M = 0. (11)

Hence, in this approach, the relationship between the
number of test points on the one hand and the truncation
index N on the other hand is given by
5
2- ) P,+4-0=4-N.

r=1

(12)

If this condition is satisfied, the eigenvalue problem, e.g. of
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determining the effective dielectric constant e, can be
solved.

There are possibilities other than the one shown above
which take the continuity conditions into account. A sec-
ond solution (method 2) can be obtained if the boundary
conditions on the strip metallization are satisfied by the
field components instead of the vector potentials (method
1). Because only a finite number N of eigenfunctions is
used, these formulations are not equivalent. Using this
method, the rank of the system matrix M and the correla-
tion between the number of test points and the number of
eigenfunctions is the same as that given in (12).

A third method to solve the problem is to combine the
PMM and the MMT. This means that the continuity
conditions for the electric fields on the curves C5 and C
(Fig. 3) are fulfilled by using the orthogonality of the
eigenfunctions in the interval [0|e]. Therefore the tangen-
tial components of the electric fields are tested by

j:_R {E§1)|y=h.q)an(x)} dx = f()e{E§2)|y=h-<I>a,,(x)} dx

,/:71{ {Ez(l)'y=h'q’bn(x)} dx = f:{Ez(z)|y=h-‘1>,m(x)} dx.

(13)

Testing with the eigenfunctions of the potential functions
instead of the arbitrary functions ®,, and ®,, delivers
expressions for the unknown coefficients C, and D, in the
form of series that depend only on 4, and B,.

The boundary conditions for the electric field on the
remaining strip metallization (curves C,,C,,C;,C,) as well
as the continuity conditions for the magnetic field on the
dielectric-air interface (curve C,) are satisfied by using
test points on these curves. This results in the following set
of homogeneous equations:

M-K'=0 (14)
where K is given by '

K= (Al"“’AN’Bl*“"BN)T'

(15)
In this case the relationship between the number of
boundary points and the truncation index N becomes

(16)

The advantage of method 3 in comparison to methods 1
and 2 is that when choosing the same number of eigen-
functions the rank of the matrix M’ is halved.

4
2- Y P +2:0=2-N.
r=1

III. DEFINITION OF THE CHARACTERISTIC

IMPEDANCE Z;

Different definitions of the characteristic impedance of
a microstrip line are given in the literature (e.g. [8]). In this
paper the definition based on the current and the power
transported in the z direction is used. The current I, is
given by

I =9§: H-ds (17)
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with
(18)

whereas the transmitted power is described by the Poynt-
ing vector:

5
c=Uc,
v=1

Mu-

ffE’xﬁ*-ﬁsz.
1A,

! (19)

1
P:——.
2 k

The subdivision of the cross section of the shielded micro-
strip line into subareas A , is demonstrated in Fig. 3.

It is worth noting that because of the symmetry Fig. 3
shows only one half of the considered microstrip line.
Therefore the characteristic impedance of the complete
line has to be calculated as follows:

P,

Z;=—;.
L I*

z

(20)

IV. NUMERICAL RESULTS

The following numerical results have been calculated
with respect to two different geometries at a frequency of
f =30 GHz. The considered waveguides are characterized
by:

microstrip line 1 microstrip line 2

¢c=1.2mm ¢=6.0 mm
d=0.5mm d=2.5mm
e=1.0 mm e=50mm
2 =0.635 mm h=0.635 mm
€,=2.33 t=35pm

) €, =2.33.

In case of structure 1 two different metallization thick-
nesses are used:

t, =10 pm (line 1a)
t,=3.5 pm (line 1b).

It shoyld be pointed out that in the case of microstrip line
1 the substrate height is nearly half the height of the
shielding, which is not usual in the case of microstrip
circuits.

Results have been calculated using an equidistant distri-
bution of test points since this has shown the most favor-
able characteristics for convergence of the solution. When
choosing test points on C; and C, respectively, it should
be taken into account that Fig. 2 shows only one half of
the total microstrip line. Hence, equidistant distribution of
the test points on the metallization is given by

1), (21)

This guarantees that the distance between xp,(1) and its
mirror point on the symmetry plane is exactly the same as
the gap between two successive points on C,. Because of
the relationship between thickness and width of the
metallization, initially no test points on C,, C;, and C,
will be considered. The chosen distribution of test points

) d—R,
XP1(1)=2P R
1

- (2i -

i=1---P,.
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Fig. 4. The dependence of the normalized propagation coefficient
(k,/ky)? = ¢.s on the number of eigenfunctions N. Microstrip line 1,
t=10 pm, R, = R; =3 pm, method 1 (boundary conditions on the
metallization are satisfied by the potentials).

on the strip boundary is shown in Fig. 3. The considera-
tion of N eigenfunctions leads to
N
PI:PS:E and Q=N-P, (22)
if method 1 or method 2 is used.

The calculations of the effective dielectric constant €
and the impedance Z; by method 3 require

N
P1=7 and Q=N-P.

Figs. 4 through 12 show various numerical results. When
the convergence behavior is investigated a special kind of
perodicity is observed (Figs. 4-9 and Fig. 12). For all cases
apparently four different curves can be recognized. They
describe this periodicity 'of the convergence behavior and
are characterized by '

— P, even and Q even (curve 1)
— P evenand Q odd  (curve 2)
— P, odd and Q even  (curve 3)
—P,oddand Q odd  (curve 4).

Fig. 4 shows the effective dielectric constant as a func-
tion of the truncation index N if the microstrip line 1a is
analyzed by method 1. In this case the approach fails.
Even for large truncation indices (such as N > 20) more
than one solution for e, as a function of N can be
observed within the interval of 1<e <e,. It has been
observed that some solutions have disappeared at larger
truncation indices (for example N =26 and N = 34 for the
case of P, odd and Q odd, shown in Fig. 4). This may
cause the misleading conclusion that a satisfactory solution
can be obtained. However, this is not the case since
convergence cannot be recognized. (It should be pointed
out here that truncation indices from N =27 to N=32
have not been analyzed. Therefore, corresponding marks
are missing in Fig. 4.)
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Fig. 5. The dependence of the normalized propagation coefficient
(k,/kq)? =€ on the number of eigenfunctions N. Microstrip line 1,
t=10 pm, R, =R, =3 pm, method 2 (boundary conditions on the
metailization are satisfied by the tangential components of the ¢lectric
field).
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Fig. 6. The dependence of the normalized propagation coefficient
(k,/ko)? =€ on the number of eigenfunctions N. Microstrip line 1,
t=10 pm, R,=R;=3 pm, method 3 (combination of PMM and
MMT).

Fig. 5 shows the results for the same waveguide if the
boundary conditions on the strip metallization are satisfied
by the field components instead of the vector potentials
(method 2). The corresponding curves which result from
the application of method 3 (combination of MMT and
PMM) are presented in Fig. 6. However, both of these
methods diverge if a thickness larger than 10 pm is chosen
for stripline 1. Therefore, numerical results (Fig. 7) are
calculated by using method 2 after reducing the strip
metallization thickness to 3.5 pm (stripline 1b). For this
increased w/t ratio convergence of the effective dielectric
constant €, as a function of the number of considered
eigenfunctions N is achieved.

Several numerical calculations of various striplines which
are not presented in this paper have shown that best



KOSSLOWSKI et al.: APPLICATION OF POINT MATCHING METHOD

1.850

1.835
1820

1.805
1,790

€t -

1.775

1.760
1.745 <

1.730 2

g @ ‘

4 174 20 28
Truncation Index N ———=

1.75

1.700

Fig. 7. The dependence of the normalized propagation coefficient
(k, /ko)? = €. on the number of eigenfunctions N. Microstrip line 1,
t=3.5 pm, Ry = R;=0.3 pm, method 2 (boundary conditions on the
metallization are satisfied by the tangential components of the electric
field).
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Fig. 8. The dependence of the normalized propagation coefficient
(k, /ky)? = €. on the number of eigenfunctions N. Microstrip line 2,
t=35 pum, R, =R, =3 pm, method 2 (boundary conditions on the

metallization are satisfied by the tangential components of the electric
field). '

results are obtained when the boundary conditions on the
strip metallization (at determined test points) have been
satisfied by the electric field components. Therefore a
further investigation using method 2 will be carried out.
Fig. 8 shows the convergence behavior of €, if stripline
2 with a metallization thickness of ¢ = 35 pm and a shield-
ing height ¢ of nearly ten times the substrate height £ is
considered by application of method 2 with equidistant
test points. It should be pointed out here that a satisfac-
tory convergence for the above metallization thickness will
guarantee the convergence for any smaller value as well.
Moreover, a good convergence behavior of the effective
dielectric constant e g will justify a sensible calculation of
the characteristic impedance Z;. Because of the good
convergence behavior of e, in Fig. 8, the corresponding
characteristic impedance Z; has been calculated (Fig. 9).
Good convergence behavior for Z; is also observed. How-
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Fig. 9. The dependence of the characteristic impedance Z; on the
number of eigenfunctions. N. Microstrip line 2, r=35 pm, R, =R; =
3 pm, method 2 (boundary conditions on the metallization are satisfied
by the tangential components of the electric field).

Distribution of the transverse electric field corresponding to
Fig. 8 if N =7 eigenfunctions are taken into account. ‘

ever, correct field distribution is only obtained for large
truncation indices (for example N =38, Fig. 11) while
lower values (for example, N:=7) will lead to incorrect
field distributiens (as shown in Fig. 10) even though €.
and Z, proved to be convergent.

Several calculations have shown the necessity of consid-
ering not only the convergence behavior of €., and Z; but
also of the field distribution. The following will be given as -
an example: ‘

The calculation of stripline 1a (# =10 pm) by method 3
using only one test point on C; leads to a good conver-
gence behavior for e, (Fig. 12). Even though the con-
verged value of e =1.7 seems to be in accordance with
available results (by using MMT), the associated field
distribution (shown in Fig. 13, truncation index N =21) is
incorrect. The strong concentration of the transverse elec-
tric field on the shielding around the dielectric interface
cannot be explained physically. The coincidence between
the calculated value of €. and that available in the.
literature is only a matter of chance. ‘

Hence from the foregoing results the following facts
should be pointed out: ‘
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11. Distribution of the transverse electric field corresponding to
Fig. 8 if ¥ =38 eigenfunctions are taken into account.
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Fig. 12. The dependence of the normalized propagation coefficient
(k,/ko)* = ¢.¢ on the number of eigenfunctions N. Microstrip line 1,
t=10 pm, R,=R,=3 pm, method 3 (combination of PMM and
MMT) with one test point chosen on C; (Py=1).

1) Best results are obtained by choosing equidistant test
points, i.e., a subdivision of the boundary corre-
sponding to the geometry (see Fig. 3).

2) It is necessary to check the obtained numerical re-
sults by validating the correctness of the field distri-
bution.

V. CONCLUSIONS

This paper has pointed out the possibilities and difficul-
ties in analyzing the characteristics of shielded microstrip
lines with finite strip metallization thickness using the
PMM. This approach is based on satisfying the boundary
conditions at discrete boundary points, which is quite
understandable. However, the examples presented call at-
tention to the necessity of proving the validity of the
obtained solutions by other criteria. This is because good
convergence behavior of the effective dielectric constant
€.y does not always guarantee the correct characteristic
impedance or field distribution. In particular, field distri-
bution can be considered as a reliable check for the
numerical results.

Fig. 13. Distribution of the transverse electric field corresponding to

Fig. 12 if N =21 eigenfunctions are taken into account.

Another disadvantage of the PMM is the strong correla-
tion between the number of boundary points considered
and the rank of the system matrix M. Since each of the
test points is described by different coordinates, the num-
ber of equations cannot be reduced analytically. Therefore
computation time and storage requirements rise drastically
if a sufficient number of eigenfunctions have to be taken
into account.

‘Nevertheless, calculating the transmission properties of
microstrip lines with high w/¢ ratios using the PMM may
lead to acceptable results.
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